Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.20.24301525

ABSTRACT

Preventing and treating post-acute sequelae of SARS-CoV-2 infection (PASC), commonly known as Long COVID, has become a public health priority. In this study, we examined whether treatment with Paxlovid in the acute phase of COVID-19 helps prevent the onset of PASC. We used electronic health records from the National Covid Cohort Collaborative (N3C) to define a cohort of 426,461 patients who had COVID-19 since April 1, 2022, and were eligible for Paxlovid treatment due to risk for progression to severe COVID-19. We used the target trial emulation (TTE) framework to estimate the effect of Paxlovid treatment on PASC incidence. Our primary outcome measure was a PASC computable phenotype. Secondary outcomes were the onset of novel cognitive, fatigue, and respiratory symptoms in the post-acute period. Paxlovid treatment did not have a significant effect on overall PASC incidence (relative risk [RR] = 0.99, 95% confidence interval [CI] 0.96-1.01). However, its effect varied across the cognitive (RR = 0.85, 95% CI 0.79-0.90), fatigue (RR = 0.93, 95% CI 0.89-0.96), and respiratory (RR = 0.99, 95% CI 0.95-1.02) symptom clusters, suggesting that Paxlovid treatment may help prevent post-acute cognitive and fatigue symptoms more than others.


Subject(s)
COVID-19 , Fatigue , Cognition Disorders
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.08.23299718

ABSTRACT

Background. In 2021, we used the National COVID Cohort Collaborative (N3C) as part of the NIH RECOVER Initiative to develop a machine learning (ML) pipeline to identify patients with a high probability of having post-acute sequelae of SARS-CoV-2 infection (PASC), or Long COVID. However, the increased home testing, missing documentation, and reinfections that characterize the latter years of the pandemic necessitate reengineering our original model to account for these changes in the COVID-19 research landscape. Methods. Our updated XGBoost model gathers data for each patient in overlapping 100-day periods that progress through time, and issues a probability of Long COVID for each 100-day period. If a patient has known acute COVID-19 during any 100-day window (including reinfections), we censor the data from 7 days prior to the diagnosis/positive test date through 28 days after. These fixed time windows replace the prior model's reliance on a documented COVID-19 index date to anchor its data collection, and are able to account for reinfections. Results. The updated model achieves an area under the receiver operating characteristic curve of 0.90. Precision and recall can be adjusted according to a given use case, depending on whether greater sensitivity or specificity is warranted. Discussion. By eschewing the COVID-19 index date as an anchor point for analysis, we are now able to assess the probability of Long COVID among patients who may have tested at home, or with suspected (but untested) cases of COVID-19, or multiple SARS-CoV-2 reinfections. We view this exercise as a model for maintaining and updating any ML pipeline used for clinical research and operations.


Subject(s)
COVID-19
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.03.23289084

ABSTRACT

This study leverages electronic health record data in the National COVID Cohort Collaborative's (N3C) repository to investigate disparities in Paxlovid treatment and to emulate a target trial assessing its effectiveness in reducing COVID-19 hospitalization rates. From an eligible population of 632,822 COVID-19 patients seen at 33 clinical sites across the United States between December 23, 2021 and December 31, 2022, patients were matched across observed treatment groups, yielding an analytical sample of 410,642 patients patients. We estimate a 65% reduced odds of hospitalization among Paxlovid-treated patients within a 28-day follow-up period, and this effect did not vary by patient vaccination status. Notably, we observe disparities in Paxlovid treatment, with lower rates among Black and Hispanic or Latino patients, and within socially vulnerable communities. Ours is the largest study of Paxlovid's real-world effectiveness to date, and our primary findings are consistent with previous randomized control trials and real-world studies.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.02.22283029

ABSTRACT

Long-term sequelae of severe acute respiratory coronavirus-2 (SARS-CoV-2) infection may include an increased incidence of diabetes. Our objective was to describe the temporal relationship between new diagnoses of diabetes mellitus and SARS-CoV-2 infection in a nationally representative database. There appears to be a sharp increase in diabetes diagnoses in the 30 days surrounding SARS-CoV-2 infection, followed by a decrease in new diagnoses in the post-acute period, up to 360 days after infection. These results underscore the need for further investigation, as understanding the timing of new diabetes onset after COVID-19 has implications regarding potential etiology and screening and treatment strategies.


Subject(s)
COVID-19 , Coronavirus Infections , Diabetes Mellitus
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.14.22281106

ABSTRACT

ABSTRACT OBJECTIVE Clinical encounter data are heterogeneous and vary greatly from institution to institution. These problems of variance affect interpretability and usability of clinical encounter data for analysis. These problems are magnified when multi-site electronic health record data are networked together. This paper presents a novel, generalizable method for resolving encounter heterogeneity for analysis by combining related atomic encounters into composite ‘macrovisits.’ MATERIALS AND METHODS Encounters were composed of data from 75 partner sites harmonized to a common data model as part of the NIH Researching COVID to Enhance Recovery Initiative, a project of the National Covid Cohort Collaborative. Summary statistics were computed for overall and site-level data to assess issues and identify modifications. Two algorithms were developed to refine atomic encounters into cleaner, analyzable longitudinal clinical visits. RESULTS Atomic inpatient encounters data were found to be widely disparate between sites in terms of length-of-stay and numbers of OMOP CDM measurements per encounter. After aggregating encounters to macrovisits, variance of length-of-stay (LOS) and measurement frequency decreased. A subsequent algorithm to identify hospitalized macrovisits further reduced data variability. DISCUSSION Encounters data are a complex and heterogeneous component of EHR data and these issues are not addressed by existing methods. These types of complex and poorly studied issues contribute to the difficulty of deriving value from EHR data, and these types of foundational, large-scale explorations and developments are necessary to realize the full potential of modern real world data. CONCLUSION This paper presents method developments to work with and resolve EHR encounters data in a generalizable way as a foundation for future analyses and research.

6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.15.22278603

ABSTRACT

BackgroundMore than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection (PASC, which includes long-COVID). ObjectiveTo identify risk factors associated with PASC/long-COVID. DesignRetrospective case-control study. Setting31 health systems in the United States from the National COVID Cohort Collaborative (N3C). Patients8,325 individuals with PASC (defined by the presence of the International Classification of Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 controls within the same health system. MeasurementsRisk factors included demographics, comorbidities, and treatment and acute characteristics related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine the associations between risk factors and PASC. ResultsAmong 8,325 individuals with PASC, the majority were >50 years of age (56.6%), female (62.8%), and non-Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; OR ranging from 2.32 to 2.58), female sex (OR 1.4, 95% CI 1.33-1.48), hospitalization associated with COVID-19 (OR 3.8, 95% CI 3.05-4.73), long (8-30 days, OR 1.69, 95% CI 1.31-2.17) or extended hospital stay (30+ days, OR 3.38, 95% CI 2.45-4.67), receipt of mechanical ventilation (OR 1.44, 95% CI 1.18-1.74), and several comorbidities including depression (OR 1.50, 95% CI 1.40-1.60), chronic lung disease (OR 1.63, 95% CI 1.53-1.74), and obesity (OR 1.23, 95% CI 1.16-1.3) were associated with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated with a lower likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), male sex, non-Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, psychosis, and dementia. More doctors per capita in the county of residence was associated with an increased likelihood of PASC diagnosis or care at a long-COVID clinic. Our findings were consistent in sensitivity analyses using a variety of analytic techniques and approaches to select controls. ConclusionsThis national study identified important risk factors for PASC such as middle age, severe COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering PASC course. KEY POINTSO_ST_ABSQuestionC_ST_ABSWhat risk factors are associated with post-acute sequelae of SARS-CoV-2 (PASC) in the National COVID Cohort Collaborative (N3C) EHR Cohort? FindingsThis national study identified important risk factors for PASC such as middle age, severe COVID-19 disease, specific comorbidities, and the number of physicians per capita. MeaningClinicians can use these risk factors to identify patients at high risk for PASC while they are still in the acute phase of their infection and also to support targeted enrollment in clinical trials for preventing or treating PASC.


Subject(s)
Dementia , Substance-Related Disorders , Pulmonary Disease, Chronic Obstructive , Depressive Disorder , Psychoses, Substance-Induced , Obesity , COVID-19 , Cardiomyopathies
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.24.22275398

ABSTRACT

Accurate stratification of patients with Post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies and could enable more focussed investigation of the molecular pathogenetic mechanisms of this disease. However, the natural history of long COVID is incompletely understood and characterized by an extremely wide range of manifestations that are difficult to analyze computationally. In addition, the generalizability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. We present a method for computationally modeling long COVID phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Using unsupervised machine learning (k-means clustering), we found six distinct clusters of long COVID patients, each with distinct profiles of phenotypic abnormalities with enrichments in pulmonary, cardiovascular, neuropsychiatric, and constitutional symptoms such as fatigue and fever. There was a highly significant association of cluster membership with a range of pre-existing conditions and with measures of severity during acute COVID-19. We show that the clusters we identified in one hospital system were generalizable across different hospital systems. Semantic phenotypic clustering can provide a foundation for assigning patients to stratified subgroups for natural history or therapy studies on long COVID.


Subject(s)
COVID-19 , Fever , Fatigue , Disease
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.18.22273968

ABSTRACT

Naming a newly discovered disease is always challenging; in the context of the COVID-19 pandemic and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes Long COVID, it has proven especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. The clinical definition and our understanding of the underlying mechanisms of Long COVID are still in flux. The deployment of an ICD-10-CM code for Long COVID in the US took nearly two years after patients had begun to describe their condition. Here we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for "Post COVID-19 condition, unspecified." Our results include a characterization of common diagnostics, treatment-oriented procedures, and medications associated with U09.9-coded patients, which give us insight into current practice patterns around Long COVID. We also established the diagnoses most commonly co-occurring with U09.9, and algorithmically clustered them into three major categories: cardiopulmonary, neurological, and metabolic. We aim to apply the patterns gleaned from this analysis to flag probable Long COVID cases occurring prior to the existence of U09.9, thus establishing a mechanism to ensure patients with earlier cases of Long-COVID are no less ascertainable for current and future research and treatment opportunities.


Subject(s)
COVID-19
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.27.22269865

ABSTRACT

Background: Reports of SARS-CoV-2 causing laryngotracheobronchitis (commonly known as croup) have been limited to small case series. Early reports suggest the Omicron (B.1.1.529) strain of SARS-CoV-2 (the dominant circulating US strain since the week of 12/25/2021) replicates more efficiently in the conducting airways. This may increase the risk of a croup phenotype in children as they have smaller airway calibers. Methods: Description of the incidence, change over time, and characteristics of children with SARS-CoV-2 and upper airway infection (UAI) diagnoses within the National COVID Cohort Collaborative (N3C) before and during the rise of the Omicron variant. We compare the demographics, comorbidities, and clinical outcomes of hospitalized SARS-CoV-2 positive children with and without UAI. Results: SARS-CoV-2 positive UAI cases increased to the highest number per month (N = 170) in December 2021 as the Omicron variant became dominant. Of 15,806 hospitalized children with SARS-CoV-2, 1.5% (234/15,806) had an UAI diagnosis. Those with UAI were more likely to be male, younger, white, have asthma and develop severe disease as compared to those without UAI. Conclusions: Pediatric acute UAI cases have increased during the Omicron variant surge with many developing severe disease. Improved understanding of this emerging clinical phenotype could aid in therapeutic decision-making and healthcare resource planning.


Subject(s)
Airway Obstruction , Asthma
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.18.21265168

ABSTRACT

Background Post-acute sequelae of SARS-CoV-2 infection (PASC), otherwise known as long-COVID, have severely impacted recovery from the pandemic for patients and society alike. This new disease is characterized by evolving, heterogeneous symptoms, making it challenging to derive an unambiguous long-COVID definition. Electronic health record (EHR) studies are a critical element of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, which is addressing the urgent need to understand PASC, accurately identify who has PASC, and identify treatments. Methods Using the National COVID Cohort Collaborative’s (N3C) EHR repository, we developed XGBoost machine learning (ML) models to identify potential long-COVID patients. We examined demographics, healthcare utilization, diagnoses, and medications for 97,995 adult COVID-19 patients. We used these features and 597 long-COVID clinic patients to train three ML models to identify potential long-COVID patients among (1) all COVID-19 patients, (2) patients hospitalized with COVID-19, and (3) patients who had COVID-19 but were not hospitalized. Findings Our models identified potential long-COVID patients with high accuracy, achieving areas under the receiver operator characteristic curve of 0.91 (all patients), 0.90 (hospitalized); and 0.85 (non-hospitalized). Important features include rate of healthcare utilization, patient age, dyspnea, and other diagnosis and medication information available within the EHR. Applying the “all patients” model to the larger N3C cohort identified 100,263 potential long-COVID patients. Interpretation Patients flagged by our models can be interpreted as “patients likely to be referred to or seek care at a long-COVID specialty clinic,” an essential proxy for long-COVID diagnosis in the current absence of a definition. We also achieve the urgent goal of identifying potential long-COVID patients for clinical trials. As more data sources are identified, the models can be retrained and tuned based on study needs. Funding This study was funded by NCATS and NIH through the RECOVER Initiative.


Subject(s)
COVID-19 , Dyspnea
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.26.21261028

ABSTRACT

Background Individuals with immune dysfunction, including people with HIV (PWH) or solid organ transplant recipients (SOT), might have worse outcomes from COVID-19. We compared odds of COVID-19 outcomes between patients with and without immune dysfunction. Methods We evaluated data from the National COVID-19 Cohort Collaborative (N3C), a multicenter retrospective cohort of electronic medical record (EMR) data from across the United States, on. 1,446,913 adult patients with laboratory-confirmed SARS-CoV-2 infection. HIV, SOT, comorbidity, and HIV markers were identified from EMR data prior to SARS-CoV-2 infection. COVID-19 disease severity within 45 days of SARS-CoV-2 infection was classified into 5 categories: asymptomatic/mild disease with outpatient care; mild disease with emergency department (ED) visit; moderate disease requiring hospitalization; severe disease requiring ventilation or extracorporeal membrane oxygenation (ECMO); and death. We used multivariable, multinomial logistic regression models to compare odds of COVID-19 outcomes between patients with and without immune dysfunction. Findings Compared to patients without immune dysfunction, PWH and SOT had a greater likelihood of having ED visits (adjusted odds ratio [aOR]: 1.28, 95% confidence interval [CI] 1.27-1.29; aOR: 2.61, CI: 2.58-2.65, respectively), requiring ventilation or ECMO (aOR: 1.43, CI: 1.43-1.43; aOR: 4.82, CI: 4.78-4.86, respectively), and death (aOR: 1.20, CI: 1.19-1.20; aOR: 3.38, CI: 3.35-3.41, respectively). Associations were independent of sociodemographic and comorbidity burden. Compared to PWH with CD4>500 cells/mm3, PWH with CD4<350 cells/mm3 were independently at 4.4-, 5.4-, and 7.6-times higher odds for hospitalization, requiring ventilation, and death, respectively. Increased COVID-19 severity was associated with higher levels of HIV viremia. Interpretation Individuals with immune dysfunction have greater risk for severe COVID-19 outcomes. More advanced HIV disease (greater immunosuppression and HIV viremia) was associated with higher odds of severe COVID-19 outcomes. Appropriate prevention and treatment strategies should be investigated to reduce the higher morbidity and mortality associated with COVID-19 among PWH and SOT.


Subject(s)
HIV Infections , Immune System Diseases , Death , COVID-19 , Viremia , Sleep Disorders, Circadian Rhythm
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260767

ABSTRACT

Importance: SARS-CoV-2 Objective: To determine the characteristics, changes over time, outcomes, and severity risk factors of SARS-CoV-2 affected children within the National COVID Cohort Collaborative (N3C) Design: Prospective cohort study of encounters with end dates before May 27th, 2021. Setting: 45 N3C institutions Participants: Children < 19-years-old at initial SARS-CoV-2 testing Main Outcomes and Measures: Case incidence and severity over time, demographic and comorbidity severity risk factors, vital sign and laboratory trajectories, clinical outcomes, and acute COVID-19 vs MIS-C contrasts for children infected with SARS-CoV-2. Results: 728,047 children in the N3C were tested for SARS-CoV-2; of these, 91,865 (12.6%) were positive. Among the 5,213 (6%) hospitalized children, 685 (13%) met criteria for severe disease: mechanical ventilation (7%), vasopressor/inotropic support (7%), ECMO (0.6%), or death/discharge to hospice (1.1%). Male gender, African American race, older age, and several pediatric complex chronic condition (PCCC) subcategories were associated with higher clinical severity (p [≤] 0.05). Vital signs (all p [≤] 0.002) and many laboratory tests from the first day of hospitalization were predictive of peak disease severity. Children with severe (vs moderate) disease were more likely to receive antimicrobials (71% vs 32%, p < 0.001) and immunomodulatory medications (53% vs 16%, p < 0.001). Compared to those with acute COVID-19, children with MIS-C were more likely to be male, Black/African American, 1-to-12-years-old, and less likely to have asthma, diabetes, or a PCCC (p < 0.04). MIS-C cases demonstrated a more inflammatory laboratory profile and more severe clinical phenotype with higher rates of invasive ventilation (12% vs 6%) and need for vasoactive-inotropic support (31% vs 6%) compared to acute COVID-19 cases, respectively (p <0.03). Conclusions: In the largest U.S. SARS-CoV-2-positive pediatric cohort to date, we observed differences in demographics, pre-existing comorbidities, and initial vital sign and laboratory test values between severity subgroups. Taken together, these results suggest that early identification of children likely to progress to severe disease could be achieved using readily available data elements from the day of admission. Further work is needed to translate this knowledge into improved outcomes.


Subject(s)
COVID-19 , Diabetes Mellitus , Asthma , Death
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.13.21255438

ABSTRACT

Background Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflammation but have been associated with complications in community-acquired pneumonia. Observations shortly after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and in one case showed reduced risk associated with NSAID use. Methods A 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of COVID-19 inpatients was constructed by matching cases (treated with NSAIDs) and controls (not treated) from 857,061 patients with COVID-19. The primary outcome of interest was COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and all-cause mortality at any time following COVID-19 diagnosis. Results Logistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 95% CI: 0.53-0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not associated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47-0.56), invasive ventilation (OR: 0.59 95% CI: 0.55-0.64), AKI (OR: 0.67 95% CI: 0.63-0.72), or ECMO (OR: 0.51 95% CI: 0.36-0.7). In contrast, the odds ratios indicate reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these associations, indicating that comparatively weak or moderate confounder associations could explain away the observed associations. Conclusions Study interpretation is limited by the observational design. Recording of NSAID use may have been incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the other measured outcomes. Our findings are the largest EHR-based analysis of the effect of NSAIDs on outcome in COVID-19 patients to date. Our results confirm and extend analogous findings in previous observational studies using a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.


Subject(s)
COVID-19 , Fever , Asthma, Aspirin-Induced , Acute Kidney Injury
SELECTION OF CITATIONS
SEARCH DETAIL